Техническая документация к устройству

Автономный температурный логгер Версия 3.2

НАЗНАЧЕНИЕ УСТРОЙСТВА

Автономный температурный логгер с отправкой данных на сервер (далее - устройство) предназначен для контроля температурного режима в процессе перевозки чувствительных к температуре грузов (например, скоропортящиеся продукты, заморозка) с возможностью мониторинга температуры в процессе перевозки, а также определения местоположения груза по данным с вышек сотовой связи. Данное устройство поддерживает отправку уведомлений по SMS на назначенные номера:

- тревожных событий по температуре (выше или ниже нормы)
- о низком заряде батареи устройства
- о состоянии устройства (summary-сообщения), раз в сутки, можно отключить.

Также есть возможность изменения параметров температурного маршрута через SMS или MQTT.

Данное устройство может использовать до 4-х аккумуляторов Li-Ion форм-фактора 18650 для увеличения времени работы. Также есть возможность распознавания зарядного устройства при подключении через USB, что дает возможность заряжать его от внешнего аккумулятора или зарядного устройства в автомобиле. Максимальный ток зарядки при этом составляет 1.5 А.

Получить информацию о температурном маршруте (выгрузку) можно двумя путями:

- подключив к компьютеру (выгрузка по USB и WiFi)
- во время мониторинга нажать кнопку (выгрузка по WiFi, например, на мобильное устройство).

общий вид

Общий вид устройства с обозначением органов управления представлен на рисунке 1.

Рисунок 1. Органы управления

С помощью кнопки можно переключаться между режимами выгрузки и мониторинга. При этом текущий температурный маршрут сохранится. Если не никакого подключения в течение 3 минут, устройство перейдет обратно в режим мониторинга. Если при удержании кнопки мониторинг включился, индикатор состояния вспыхнет 2 раза, а если выключился — 3 раза.

Поведение индикатора состояния устройства представлено в таблице 1.

Таблица 1. Поведение индикатора состояния устройства (зеленый светодиод).

Поведение	Значение
Не горит	Устройство выключено
Вспыхивает на 300 мс раз в	Режим мониторинга, подготовка
секунду	
Вспыхивает на 300 мс раз в 3	Режим мониторинга
секунды	
2 вспышки на 300 мс раз в 4	Режим мониторинга, низкий заряд
секунды	батареи
Мигание с частотой 1 Гц	Режим выгрузки

Не горит	Устройство выключено,
	аккумулятор полностью заряжен
Горит постоянно	Устройство выключено,
	аккумулятор заряжается

При подключении к компьютеру по USB устройство автоматически переходит из любого режима в режим выгрузки.

Состояние подключения к сети также можно отследить по индикатору связи с GSM. Его поведение указано в таблице 2.

Таблица 2. Поведение индикатора связи с GSM (красный светодиод)

Поведение	Значение
Не горит	Модем отключен
Вспыхивает раз в секунду	Поиск сети или связь с сетью не
	установлена
Вспыхивает раз в 3 секунды	Сеть найдена, связь GPRS не
	запущена
Частые вспышки	Соединение GPRS установлено

ОПИСАНИЕ РЕАЛИЗАЦИИ

Ядро

В основе устройства лежит МК ESP32, поскольку в нем реализованы возможности, необходимые для устройства:

- Deep Sleep для экономии заряда батареи
- Ultra Low Power сопроцессор (ULP), управляет индикацией состояния устройства
 - WiFi, может работать как в режиме точки доступа, так и клиента
- Возможность подключить Flash-память до 16 МБ, что дает возможность хранить программу, настройки и температурные маршруты в одном месте (используется 4 МБ)
- Пробуждение по внешним прерываниям для пробуждения по нажатию кнопки, подключению USB и приходу SMS на GSM-модуль

GSM-модем

В качестве модема используется SIM800C ввиду удобного для монтажа исполнения. Однако нижняя граница питающего напряжения для данного модема составляет 3.4 В, поэтому для расширения диапазона напряжений используется повышающий преобразователь на SX1308.

Обмен данными с ПК

Для перепрошивки, настройки и обмена данными с ПК используется USB-UART CH340C, поскольку требует минимум обвязки. Для управления

состоянием контроллера и подготовке к обмену данными используется транзисторная сборка UMH3N, так как занимает минимум места на печатной плате. Управление состоянием контроллера производится с помощью пинов EN (сброс) и IO0 (перевод в режим выгрузки или прошивки) посредством RTS и DTR.

Питание и зарядка

Устройство может питаться от 4-х Li-Ion батарей для увеличения времени работы. Для защиты от короткого замыкания, перезаряда и переразряда используется контроллер защиты DW-01P и транзисторные ключи FS8205. Стандартный порт USB 2.0 ПК не рассчитан на ток более 0.5 А, поэтому используется два TP4056: один настроен на 0.4 А для медленной зарядки и работает всегда, другой на 1 А для быстрой и включается только при обнаружении зарядного устройства.

Для питания по линии +3.3 В используется линейный стабилизатор ME6211. Он малогабаритный, при этом на выходе минимальное отклонение напряжения от номинального, и его собственное потребление мало.

GSM-модем питается от аккумулятора через повышающий преобразователь на SX1308 для стабильной работы на низких напряжениях. Согласно документации, минимальное напряжение питания 2 В, защита АКБ отключает устройство, когда на АКБ меньше 2.5-2.7 В, зависит от DW-01. Экспериментально установлено, что минимальное напряжение питания 3.1 В.

Детектирование зарядного устройства

Распознавание зарядного устройства происходит с помощью коммутатора TS3USB221 и транзисторного ключа. Если МК обнаруживает, что есть питание по USB, запускается цикл, в ходе которого коммутатор переключается то на транзисторный ключ, то на CH340, поскольку, согласно спецификации USB, если устройство находится в IDLE более 3 мс, оно переходит в состояние SUSPENDED, в котором оно не отвечает на запросы хоста: видится в системе, но в консоль CH340 ничего не выдает. На второй контактной группе коммутатора D- подтянут к +3.3В через резистор в 1 кОм для уменьшения инъекции тока в линию данных и для открывания ключа Т4 в случае, если линии данных ЗУ замкнуты между собой. На D+ слабая подтяжка на «-» и затвор транзистора Т4, отвечающего за детектирование. Схема детектирования представлена на рисунке 2.

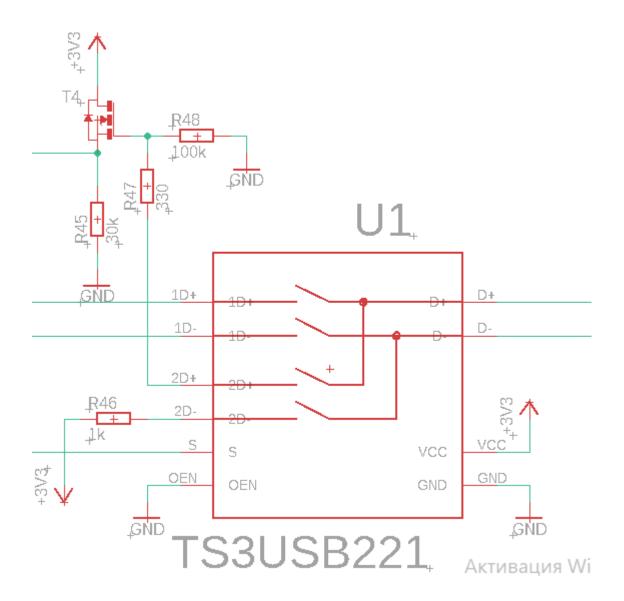


Рисунок 2. Схема детектирования зарядного устройства

Если напряжение на линиях данных около 0.6 В, и они не замкнуты между собой, то транзисторный ключ не откроется, и это подключение будет считаться как подключение к ПК, и быстрая зарядка не подключится.

Если напряжение на линиях более 1 B, то транзисторный ключ откроется за счет напряжения на линии D+, и быстрая зарядка включится.

Если линии замкнуты между собой, то транзистор откроется за счет подтягивающего резисторы R46.

Измерение температуры

В качестве температурного датчика используется DS18B20. На этом датчике возможно программирование разрешения, и соответственно, точности измерения. Диапазон напряжений -3-5 В, а измеряемых температур - -55-125 °C. Также возможно подключение нескольких датчиков по одной шине для расширения функционала в будущих версиях устройства.

Шина І2С

По данной шине подключаются часы реального времени на DS3231 и дисплей на SSD1306 (опционально). У DS3231 нет температурного ухода времени и может питаться от напряжения более 2 В. OLED-дисплей на SSD1306 выдает информацию об устройстве в режиме выгрузки и последнюю полученную температуру в режиме мониторинга.

Печатная плата

На рисунке 3 показан чертеж печатной платы с верхним и нижними слоями меди, шелкографии, а также переходными отверстиями и отверстиями под компоненты и габаритными размерами.

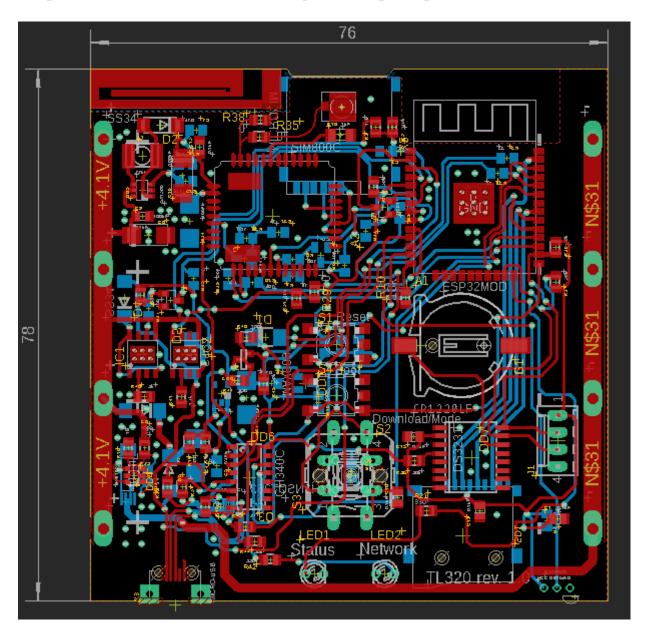
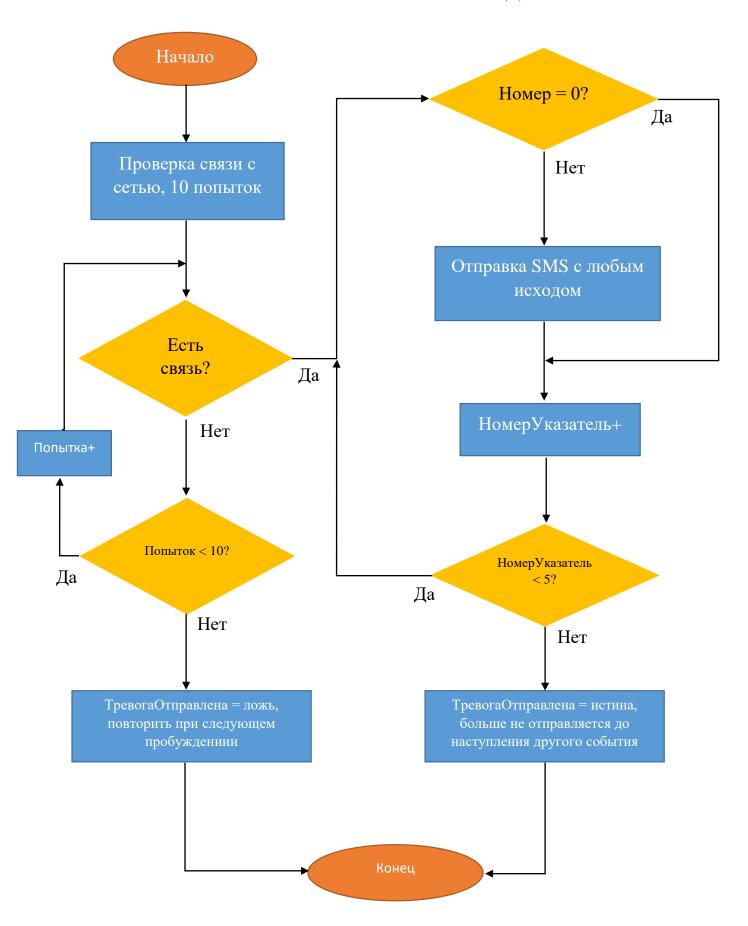
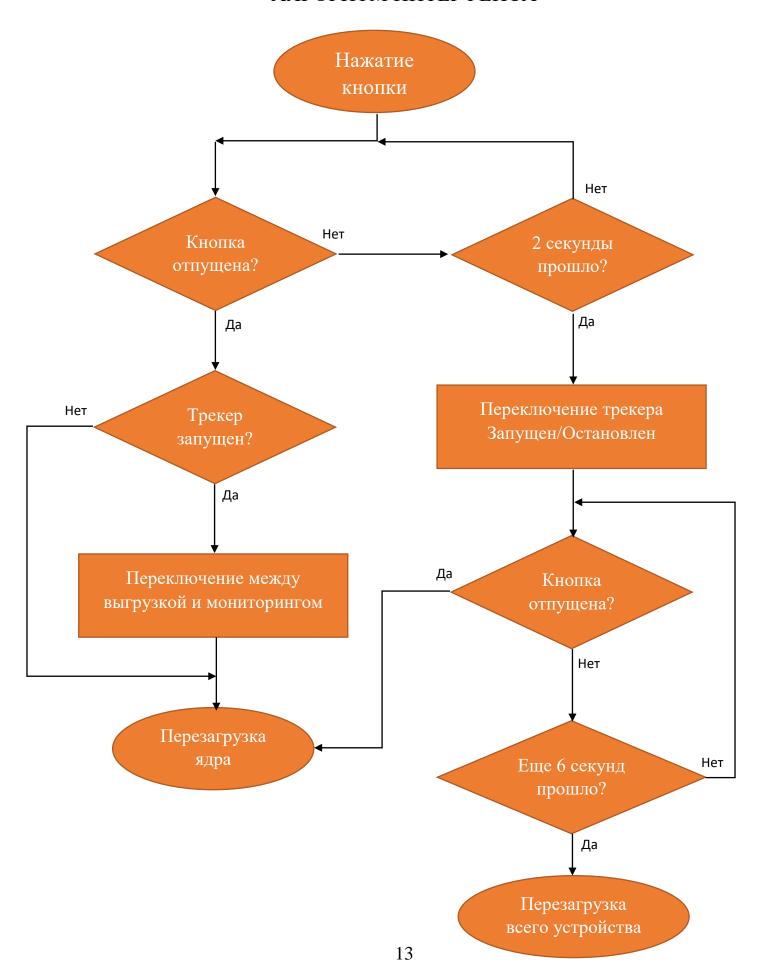


Рисунок 3. Чертеж печатной платы

Плата предназначена для установки на батарейный отсек 4*18650 для компактности монтажа и эффективности использования места в корпусе.


Также для компактности монтажа и поддержания хода часов реального времени батарейки форм-фактора CR1220.

Для удобства установки/снятия SIM-карты предусмотрен вырез в плате сверху.


На случай использования платы в других исполнениях устройства предусмотрены:

- посадочное место под кнопку 6*6
- посадочное место под карту памяти
- посадочное место под разъем дисплея
- перемычки для переключения между встроенной антенной GSM и внешней.

АЛГОРИТМ ОТПРАВКИ УВЕДОМЛЕНИЙ

АЛГОРИТМ ИНТЕРФЕЙСА

Примечание: при перезагрузке ядра сохраняется состояние устройства. Это необходимо для изменения режима работы устройства и уменьшения энергопотребления.

При перезагрузке всего устройства происходит перезагрузка со сбросом ядра, состояния и GSM-модема.